

NBV-003-1262003 Seat No.

M. Phil (Sem. II) (CBCS) Examination

April / May - 2017

Mathematics: EMT-20011

(Complex Analysis) (New Course)

Faculty Code: 003

Subject Code: 1262003

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions:

- (1) Answer all questions.
- (2) Each question carries 14 marks.
- 1 Answer any seven questions:

 $2 \times 7 = 14$

- (i) If $a \in \mathbb{Z}, |a| < |$ then prove that $\phi_a(z) = \frac{z a}{1 \overline{a}z}$ is analytic on $\left\{ z \in \mathbb{Z} \middle| |z| < \frac{2}{|a|} \right\}.$
- (ii) If $f(z) = \exp(e^z) \forall z \in \emptyset$ then find $M(r), \forall \sim 0$.
- (iii) True or False ? Justify :

Weirstrass factorization of an entire function is unique.

- (iv) If f is a non-constant entire function then prove that $M(\sim) \rightarrow \infty$ as $r \rightarrow \infty$.
- (v) Prove that $0,\infty$ are asymptotic values of the exponential function.
- (vi) State, without proof, Hadamard's factorization theorem.
- (vii) For an entire function f, prove that $a \in pv(f) \Rightarrow$ "a" is an asymptotic value of f.

- (viii) If f is an entire function of finite non-integral order then prove that f has infinitely many zeros.
- (ix) Prove that the only analytic functions : $\subset_{\infty} \to \subset$ are constant functions.
- (x) If $w_1, w_2 \in \mathbb{Z}$ are linearly independent over \mathbb{R} and $\Pi = \{nw_1 + mw_2 \mid n, m \in z\} \text{ then prove that } f : \mathcal{T}/\Pi \to S^1 \times S^1$ defined by $f((\alpha w_1 + \beta w_2) + \Pi) = \left(e^{2\pi i\alpha}, e^{2\pi i\beta}\right), \ \forall \alpha, \beta \in \mathbb{R}$ is one-one.
- 2 Answer any two questions:

 $2 \times 7 = 14$

- (a) State and prove Jensen's formula.
- (b) Define order of an entire function. Find the order of cosz.
- (c) Give an example of an entire function with infinite order. Justify.
- 3 (a) If f is an entire function of order λ then prove that 7

$$\lambda = \limsup_{r \to \infty} \frac{\log \log m(\sim)}{\log r}.$$

(b) If f is an entire function, f(0) = 1 and n(r) is the number 7 of zeros of f in B(0,r) counted according to the multiplicity, $\forall \sim > 0$ then prove that $n(r) \log 2 \leq \log M(2r), \forall \sim > 0$.

OR

- 3 (c) If $GC \not\subset$ is a region, $f: G \to \not\subset$ is analytic, $f(z) \neq 0, \forall z \in G$ 7 and $h(z) = \log |f(z)|, \forall z \in G$ then prove that $\frac{\partial h}{\partial x} \frac{i\partial h}{\partial y} = \frac{f^1}{f}$ on G.
 - (d) Let g be a polynomial of degree $n \ge 1$ then prove that order of $e^{g(z)}$ is n.

[Contd...

4 Answer any two questions:

 $2 \times 7 = 14$

- (a) True or False? Justify. The exponential function has only finitely many fixed points.
- (b) If $f: B(a, \sim) \to \emptyset$ is analytic and $|f^{1}(z) f^{1}(a)| < |f^{1}(a)|$, $\forall a \neq z \in (a, \sim)$ then prove that $f: (B(a, \sim) \to \emptyset)$ is one-one.
- (c) State and prove Little Picard theorem.

5 Answer any two questions:

 $2 \times 7 = 14$

(a) If $g: B(0,R) \to \emptyset$ is analytic, $g(0) = 0, |g^{1}(0)| = \mu > 0$ and $|g(z)| \le M, \forall z \in B(0,R)$ then prove that

$$g(B(o,R)) \supset B\left(0, \frac{R^2\mu^2}{6M}\right).$$

- (b) If $f: \not\subset \to \not\subset$ is entire and injective then prove that f is a polynomial of degree 1.
- (c) With usual notation, prove that $IP^1(Z)$ is a compact Riemann surface.
- (d) Define analytic function between two Riemann surfaces. Prove that every polynomial with complex coefficients is an analytic function : $\not\subset_{\infty} \rightarrow \not\subset_{\infty}$.